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This study of the boundary layer of steady, incompressible, plane, crossed-fields 
m.h.d. flow at large Reynolds number Re and magnetic Reynolds number Rm 
begins with a review of Hartmann’s case, where a boundary layer occurs whose 
thickness is proportional to (ReRm)-4. Following this clue, it  is shown that in 
general the boundary layer is a ‘local Hartmann boundary layer’. Its profiles 
are always exponential and it is determined completely by local quantities. 
The skin friction and the total electric current in the layer are proportional to 
the square root of the magnetic Prandtl number, i.e. to (Rm/Re)fr. Thus the ex- 
terior-flow problem, the solution of which precedes a boundary-layer solution, 
generally involves a current sheet at the fluid-solid interface. 

This inviscid-flow problem becomes tractable if (Rm/Re)* is small enough to 
permit a linearized solution. The flow field about a flat plate at zero incidence 
is calculated in this approximation. It is pointed out that the thin-cylinder 
solutions of Sears & Resler (1 959), which pertain to Rm/Re = 0, can immediately 
be extended to small, non-zero values of this parameter by linear combination 
with this flat-plate solution. 

1. Introduction 
The term ‘ crossed-fields ’ has been used to describe certain flows of electrically 

conducting fluids involving, in some undisturbed region, a uniform fluid stream 
and a uniform magnetic field making a non-zero angle with it. It is clear that 
there must be an electric field in such a region, directed perpendicularly to 
both the stream velocity and magnetic-field vectors. In  most investigations 
(see e.g. Sears & Resler 1959, 1964; Dix 1963; Clauser 1963) further simpli- 
fication has been achieved by assuming steady conditions and two-dimensional 
flow. 

In some of these investigations, viscosity, electrical resistance, or both, have 
been neglected. The most significant phenomena studied are then the standing 
Alfvbn waves or (in compressible fluids) magneto-acoustic waves that are pro- 
duced by the streaming of the fluid past an obstacle or other disturbance. 
When the diffusive phenomena are included, it is found that the standing 
waves are diffused, and the resulting regions of vorticity and current, extending 
parabolically away from the source of disturbance, are sometimes called 
‘wakes’. 

Clauser (1963) undertook to systematize crossed-fields flow by studying the 
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‘field modes ’ exhibited by the partial-differential equation system of small 
perturbations. One of his conclusions is that ‘we can never have boundary layers 
or wakes in the conventional sense’. In  particular, he finds, when the two dif- 
fusive parameters are equal (‘magnetic Prandtl number’ equal to one), that ‘no 
boundary layer or wake phenomena can possibly exist’. (Here of course, he 
is using the word ‘wake ’ correctly, to mean only the vertical-flow region directly 
downstream of a disturbance.) 

These conclusions of Clauser are somewhat puzzling in the light of several 
investigations where phenomena are revealed that surely resemble boundary 
layers; i.e. they are thin regions (for small viscosity and resistivity) adjacent to 
a solid-fluid interface, in which the tangential component of velocity varies 
rapidly and there is large vorticity. The results of both Dix (1963) and Bryson & 
RoBciszewski (1962), involving crossed-fields flow past a flat plate, exhibit such 
behaviour unmistakably. There is also an earlier study by Stewartson (1960) 
which the present author criticized (Sears 1961) in its application to aligned- 
fields flow, but which surely exhibits in crossed-fields flow a kind of boundary 
layer adjacent to a plane wall for arbitrary non-zero values of the diffusion para- 
meters. Actually, the essence of Stewartson’s analysis was anticipated by 
Hartmann in his classical study (1937) of magnetohydrodynamic Poiseuille 
flow. For small viscosity and/or resistance the velocity profile is flat over most of 
the channel width, and there is a boundary layer a t  each wall. 

It is therefore of some interest to examine the subject of crossed-fields bound- 
ary layers more closely and to reconcile, if possible, Clauser’s sweeping statements 
with the indications of other investigations. 

2. The boundary layer of Hartmann flow 
We begin by reviewing briefly the classical case studied by Hartmann; 

i.e. flow of an incompressible conducting fluid between parallel plane walls 
in the presence of perpendicular transverse magnetic and electric fields and a 
uniform pressure gradient. 

The equations for incompressible steady flow are, in e.m.u. (see Sears & 

v. Vv - -H P . VH + - 1 grad (p +=) P H 2  = vV2v, 
Resler 1964), 

47TP P 

and curl H = 47ru{E + pv x H}, (2) 

together with the conditions divv = 0 and divH = 0. Here v, E and H are the 
velocity, electric-field, and magnetic-field vectors, while p, v, p and u are the 
permeability, kinematic viscosity, density, and electrical conductivity of the 
fluid. Equation (1) is the momentum equation for the fluid, where the electro- 
magnetic body force has been expressed with the aid of AmpBre’s Law. Equation 
(2) is Ohm’s Law for the moving conductor, again using Amphe’s Law. The 
assumptions made in deriving these equations are (i) steady flow and (ii) con- 
stancy of p, v and u. 

The case studied by Hartmann is sketched in figure 1; it  is characterized by 
a/az = 0 = a/ax (except that a constant pressure gradient aplax = p ,  may be 
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present). It follows, with the aid of Faraday’s Law and the boundary conditions 
indicated, that v = (w,, O , O ) ,  H = (H,, H,, 0 ) ,  and E = (O,O,E,), where H, and 
E,  are given constants. 

The equations are immediately reduced to 

FIGURE 1. Sketch defining Hartmann flow. 

Upon substitution of equation (5) into equation (3), an equation for w, is ob- 
tained, which is easily integrated, yielding a familiar result (see Hartmann 
1937; Resler & Sears 1958). For brevity we shall not write it out here in its exact 
form, but only exhibit it for the case of large Hartmann number 

Ha = pH,a~(~(a/pv), 

in which the boundary-layer character is shown. For y > 0, it is 

Near each wall there is a boundary layer of exponential profile, of thickness 
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Across this layer the streamwise component of magnetic field, H,, changes its 
value by an amount 

The difference in pressure across the layer is clear from equation ( 4 ) .  
These are the same as Stewartson’s results (1960) except for our inclusion of 

the pressure gradient pz;  to recover his formulae, we need only put pz  = 0 and 
write U for the constant preceding the bracket in equation ( 6 ) .  

We shall refer to this type of boundary layer as a ‘Hartmann layer’. It has 
the unusual properties of (i) constant thickness, and (ii) thickness proportional 
to  the square root of the product of two diffusivities. 

3. The boundary-layer equation 
In  this section we shall derive the appropriate equations for the description 

of the boundary layer in a general case of steady, two-dimensional, cross-fields 
flow at large Hartmann number. For simplicity and clarity of the argument, 
we shall suppose that the fluid is incompressible; the conclusions for compressible 
fluids are essentially the same. 

Before undertaking this derivation, however, let us write out equations (1) 
and (2) in terms of dimensionless variables. The reference quantities employed 
to normalize v,H, E, p ,  and the co-ordinates are respectively the undisturbed- 
flow quantities U and H,, the combinations p [  U x HoI and +U2, and a reference 
length L. The equations are then 

v . Vv - A-W. VH +grad P = Re-IV2v (9) 

(10) and 

where 

E -t v x H = Rm-I curl H, 
P = p + A-2H2, 

A2 = 4n;oU2/pH~, 
Re = UL/v ,  

Rm = 47~pULg.  

The divergence conditions are unchanged. Faraday’s Law, in this two-dimen- 
sional steady case requires E = (0, 0 , l ) .  

Equations (9) and (10) will now be written out in familiar boundary-layer 
co-ordinates. These are orthogonal curvilinear co-ordinates z and y, parallel 
and perpendicular, respectively, to the solid-fluid interface in the plane of the 
flow, and z normal to it. Specifically, y is the dimensionless distance from the 
interface and z the dimensionless distance measured along the interface (cf. 
Goldstein 1938). The differential operators of equations (9) and (10)’ when written 
out in these co-ordinates, naturally involve the dimensionless curvature K ( X )  of 
the surface. It seems important to carry through the derivation with this degree 
of generality because there are new terms and different orders of magnitude 
compared with the classical case of the Prandtl boundary layer. 

Nevertheless, the process is greatly facilitated by reference to Goldstein 
(1938), where the equations of non-conducting fluids are written out in these 
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co-ordinates. The form of equation (9 )  can be deduced immediately, since the 
only new terms are those of H . VH, which are analogous to those of v . Vv. The 
complete equations are, for the two-dimensional case, 

The form assumed by equation (10)  can also be written out immediately, 
since Goldstein provides the curl operator (see pp. 102 and 119): 

Finally, both divergence-free conditions can be written as 

The boundary-layer equations are now determined by collecting the leading 
terms of equation ( 1  l ) ,  (12)  and (13) under the following assumptions: 

(i) That the boundary layer is thin, of thickness 6, where 6 + 0 as Ha -+ 03. 

Taking our clue from the Hartmann layer, we assume explicitly that 6 is of order 
l/Ha, or, for fixed, arbitrary value of A ,  

6 = O(Re Rm)-*. 

(ii) That the magnetic Prandtl number, Rm/Be,  has a fixed, arbitrary value 
as Ha + oc). I n  other words, both Re-l and Bm-l in the differential equations 
are of order 6. 

(iii) That the curvature of the surface is not large; specifically that both 
6~ and 6(dK/dx) can be neglected in comparison with 1 as Ha -+ co. 

Consider first the divergence conditions (equation (14)) .  For points within 
the boundary layer they state that both av,/ay and aH,/ay are O( 1 )  a t  most. In  
view of the boundary condition vJx,  0 )  = 0, this means 

vy = O ( 4 ,  (15)  
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and that H,, varies only to order 6; i.e. 

Hu = H,(Z) + O(S).f 

Now consider the leading terms of equation (13); they are O(l);  viz. 

1 + V, H,(x) = - Rm-1 aH,lay. (17) 

aP/ay = o(i) (18) 

(at most); i.e. P = P(z )  + O(6) (19) 

The leading terms of equation (12) are seen to be O( 1); this equation therefore 
becomes a statement that 

in the layer. 

leading terms are O(6-I); viz. 
The orders of magnitude of terms in equation (11) can now be assessed; the 

- A-~H,(x)  aH,lay = Re-l a2vxlay2. 

A-ZH,(X) (H,(x, 8) - H,} = Be-lav,lay, 

(20) 

Integrating with respect to y ,  we have 

(21) 

where the arbitrary function of x has been evaluated at y = 6, where (by defini- 
tion) av,/ay = 0. 

Since aH,/ay also vanishes at the outer edge of the layer, equation (17) includes 
the information that 

which is nothing but the statement, in dimensionless two-dimensional form, 
that E+pv xH = 0 in an ideal conducting fluid. Thus equation (17) can be 

(23) 
written 

(22) 1 + V,(., 6) HJX) = 0, 

H , ( ~ )  {v,(X, 8) - v,} = ~ ~ - 1  aH,lay. 

In  both equations (21) and (23), the quantities in brackets are the deJiciencies 
of H, and vuy, respectively, relative to conditions just outside the boundary 
layer. Let these be called Hj; and vj; for the time being; then equations (21) and 
(23) can be combined by cross-differentiation to read 

(y') = 0. 
vz 

The solution is therefore 

The combination .J(Re Rm) A-I is recognized as the Hartmann number, Ha, of 
the flow. 

t The symbol H,(z), of course, denotes the value of H ,  at any value of y within the 
boundary layer; it will be used consistently to emphasize that this part of H ,  (the largest 
part) is a function of x only. The analogous notation is used in equation (19). For brevity 
the independent variables are not written out in general for the various functions when they 
are dependent upon both x and y. 
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The constant of proportionality in vj. is determined immediately by the no- 
slip boundary condition, which is v; =vx(x, 6) at y = 0;  thus (for y > 0) ,  

v, = v,(x,S)[l-exp{-HaH,(x)y)]. (26) 

The constant of porportionality in H; can be determined by comparing 
- aH;/ay with aHx/ay in equation (23), namely R m H , ( z )  vj.. The result is 

Equations (26) and (27 )  do not exhaust the conclusions that can be drawn 
from the first-order (in 6) boundary-layer theory, of course, but they are suffi- 
cient for our subsequent discussion. 

4. Discussion of equations 
Surprisingly, it has been possible to integrate the equations of the two-di- 

mensional crossed-fields boundary layer in general, making only very reasonable 
assumptions about the curvature of the interface. The results, equations (26) 
and (27), state that the boundary layer is always a Hartmann-type layer and 
is described by equations analogous to equations (6)-(8) with Ha replaced by the 
local Hartmann number based on the normal component of H and with U replaced 
by the local flow speed outside the layer. Although we cannot agree with Clauser 
that ‘no boundary layer can exist ’, we must agree that it is not a conventional 
layer. I ts  profile is always exponential and its thickness depends completely on 
local quantities.? 

Essentially, the reason for this is that the viscous shear and the body force are 
in equilibrium; the boundary layer does not pass along a momentum deficiency 
to the stations downstream. For example, let us calculate the local skin friction. 
From equation (26), it is (per unit length of the wall) 

pv(avxlaY),=o = PVV,(X, 6) Ha HJ.) UP, 
or the local skin-friction coefficient is 

The total body force on the boundary layer (per unit length of the wall) is the 
product of HoH,(x) and 1/4n times the jump in H,Ho across the layer, from 
equation ( 2 7 ) :  1 

4n --w,(x) A J ( R m / m  vx(., 4, 

which is exactly the same. 
Let us consider the process of solving flow problems in this category. As is 

characteristic of boundary-layer flows, the external flow solution for the limit 
Ha = co must be solved first. This flow involves a vortex sheet at the interface, 
as usual, but this phenomenon has no effect on the flow. 

t Prof. I. Imai points out the analogy between this boundary layer and the boundary 
layer with suction. In Schlichting (1960), pp. 271,272, the case of the flat plate is analysed. 
It does not seem to have been noted in the literature that, as the present analysis shows, 
the results apply locally to more general flows where U ,  and v, (in Schlichting’s notation) 
are variable. 
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However, equation (27) states that this external-flow solution also involves 
a current sheet at the interface, of strength 

A J(RmlRe) v&, 4. 
I n  other words, the boundary condition of continuity of H, at the interface, which 
is often employed (Sears & Resler 1959) is correct only for magnetic Prandtl 
number (Rm/Re = Pr,) equal to zero (cf. Stewartson 1960). 

For other values of Pr,, the more complex boundary condition, involving 
as it does one of the results of the calculation, is appropriate. This complication, 
however, seems to render more difficult a subject that is already practically 
unsolvable: there are no known general methods of solving crossed-fields flow 
problems, even for ideal inviscid conductors. Note that even the flat-plate 
problem is intractable in this respect. The current-sheet strength is O(Pr,)* 
which is O(1); the crossed-fields flow of an ideal inviscid conductor past such a 
current sheet is not known. 

Before proceeding to seek a solvable case, we interpolate here some remarks 
concerning the approach to two limiting cases, namely (i) non-magnetic flow 
(H, -+ 0), and (ii) aligned-fields flow (U x H, --f 0). In  both limits the boundary 
layer should change its character dramatically, increasing in thickness to 
O(Rm-*) or O(Re-*), and losing its simple, local-Hartmann nature. These limits 
are not within the scope of the present theory, however. Non-magnetic flow is 
obviously eliminated by the assumption of large Hartmann number. That the 
aligned-fields limit is also excluded can be seen in equations (24)-(27), where 
H,(x) vanishes in the limit. Then H, and vz are essentially constant through the 
thin layer considered here, which means that the boundary layer is an order of 
magnitude thicker. 

5. Flat-plate flow at small Pu, 
We shall now show that approximate results can be obtained, to order Prk, 

for small Pr,. Consider the case of flat-plate flow with perpendicular fields; 
since the only disturbance to the fields in the limit Ha = 00 is due to the current 
sheet, it is permissible to assume a small-perturbation solution of the form 

where u’, v‘, h,, and h, are all small compared with 1 and S, y are rectangular 
Cartesian co-ordinates aligned with the free stream (and the plate) and the im- 
posed magnetic field, respectively. 

But this is exactly what was assumed in our study of crossed-fields flow past 
thin cylinders (Sears & Resler 1959), and the results can be carried over immedi- 
ately. In  particular (from equations (4s) to (55) of Sears & Resler 1959), 
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h v = -u', (32)  

where F and G are arbitrary functions, identical with F, and G, of Sears & 
Resler (1959) but made dimensionless by dividing by U, and q5 is a harmonic 
function, identical with g5, but divided by UL. 
Our knowledge of the mechanism of Alfv6n-wave propagation permits us to 

put F and G ,  respectively, equal to zero in certain regions. Let the flow field 
be subdivided as in figure 2 (c) ,  then: 

I n  I and I V :  P = 0 = G. There are no discontinuities; the flow is wave-free, 
current-free, and irrotational. 

I n  11: G = 0. A boundary condition is w'(x, 0 + ) = 0 ;  thus, 

( l / l+A2)F(X)3-g5 , (5 ,0+)  = 0,  (33)  

where q5Jx, y )  denotes aq5lay. 
In I I I :  F = 0.  

( 1 / 1  + A 2 )  G(z) + $,(x, 0 - ) = 0. (34)  

This flow field must be symmetrical about the x-axis, i.e. invariant to a re- 
flexion of y in - y ,  since the direction assigned to H is purely conventional. 
Thus u' and h, must be even in y ,  and v' and hg odd; this requires that 

F = -G and #(x,y) = $(x, - y ) .  ( 3 5 )  

In the light of equations ( 3 5 ) ,  equations ( 3 3 )  and (34)  state that the jump in 
q5v across the plate, say [L~,(x)], is 

[$, ( 4 1  3 9,(., 0 + 1 - g5& 0 - 1 
= ( - 211 + A2) P(x).  (36)  

We now introduce the jump condition on hz, from equation ( 2 7 ) .  Since the 
jump in h, across the plate-plus-boundary layers is twice the jump across the 
boundary layer, this statement is 

( 3 7 )  

( 3 8 )  

[h,(~)] h,(x, O + ) - hZ(x, O - ) 

= 2.44 ,/(P,,) (1 + O( p?J), 
= 2 A  ,/(Prm) v,(x, 0 + ) 

which is just 2A4Prm in our first-order (in 4Prm) theory. Let us call this small 
quantity 2 ~ .  

According to equation ( 3 1 ) ,  then 

2~ = - (A2/1 +A2)  (F(2)  - G(x)) + [#,(x)] (39 )  

F ( z )  = - 2 F ( x ) .  F(x) - __ 
2 2A2 = -__ 

1+A2 l + A 2  

Thus 
in this case. 

F(x)  = const. = - E = - G(x) (411 
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Furthermore, the jump [#,(x)] is now seen to be a constant, namely 2s/( 1 + A 2 ) .  
That there is no jump in q5z follows immediately from the symmetry, equation 
(35); thus #(x,y)’ represents the flow due to a source sheet at most, and not a 

I 

I I I I I I I I 
I yp>T I I 

I 1 
1 

I 

I 

I 
I 

I 
1 I 

I 
I I 1 

I I I 

I I 

I ‘ ;  I 

FIGURE 2. Sketches showing small-perturbation flow past flat plate in the limit Ha = 03. 

The parameter e, defined as 2A2/Prm, has been taken equal to + and A = 1. Sketch (a) 
shows the harmonic part of the solution and ( b )  the rotational part. Sketch (c) is the com- 
bined flow. In each case streamlines are solid and magnetic lines of force dashed. The 
direction of flow is from left to right. 
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vortex sheet. The flow field of this source sheet, having the constant strength 
2s/( 1 + A2), is given by 

This is the flow field of incompressible irrotational flow past a slender wedge, 
as sketched in figure 2 (a). The rotational part of the total flow field is given by 

P(x-Ay)  = -6 for y > 0 and 0 < x-Ay  < 1, 

= 0 elsewhere, 

G ( x + A y ) = s  for y <  0 and O < z + A y <  1, 

= 0,  elsewhere, 

which is analogous to, but not identical with, supersonic flow past a reversed 
wedge, as sketched in figure 2 (b ) .  The streamlines of the superimposed flow are 
sketched in figure 2 (c). 

In each case the corresponding configdation of magnetic lines of force is 
also sketched. 

6. Flow past thin cylinders at small Ptr, 
The results of our previous calculations (Sears & Resler 1959) for thin cylinders 

(airfoils) can now be generalized to the case of non-zero but small Pr, provided 
that only first-order effects in JPr, and first-order effects in body thickness are 
considered. Equations (29)-(32) apply once again, and so does equation (38), 
which establishes the magnitude of the boundary-layer effect; namely A JPr, 
for any thin cylinder. 

Thus, all four of the perturbationvector components are simplylinear combina- 
tions of the results obtained in Sears & Resler and those obtained in $ 6  of the 
present paper. 

The lift and moment on the cylinder are, of course, unaffected by the bound- 
ary-layer effect, by virtue of its symmetry. The drag, on the other hand, involves 
two new terms related to viscosity. The first is the skin-friction drag; according 
to $ 4  the value of this term, to first order in Pr,, is 

2pUvHa, or 2pU2L J(Pr,)/A 

per unit length of the cylinder. 
The second drag term is of higher order. It results from the non-uniform 

pressure perturbation due to the boundary-layer effect calculated above, if the 
body has incidence or camber. Its order of magnitude is given by the product of 
JPr, and the body-thickness parameter.? 

proportional to the body-thickness parameter squared. 
t The drag mentioned in Sears & Resler (1959, p. 269), for the cage Pr, = 0, is, of course, 
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